CALL FOR PAPERS Physiology and Pharmacology of Temperature Regulation Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related?
نویسندگان
چکیده
Shabtay, Ariel, and Zeev Arad. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related? Am J Physiol Regul Integr Comp Physiol 291: R566–R572, 2006. First published February 23, 2006; doi:10.1152/ajpregu.00685.2005.— Transcriptional induction of heat-shock genes in response to temperature elevation and other stresses is mediated by heat-shock transcription factors (HSFs). Avian cells express two redundant heat-shock responsive factors, HSF1 and HSF3, which differ in their activation kinetics and threshold induction temperature. Unlike the ubiquitous activation of HSF1, the DNA-binding activity of HSF3 is restricted to undifferentiated avian cells and embryonic tissues. Herein, we report a reciprocal activation of HSF1 and HSF3 in vivo. Whereas HSF1 mediates transcriptional activity only in the brain upon severe heat shock, HSF3 is exclusively activated in blood cells upon light, moderate, and severe heat shock, promoting induction of heat-shock genes. Although not activated, HSF1 is expressed in blood cell nuclei in a granular appearance, suggesting regulation of genes other than heat-shock genes. Intraspecific comparison of heat-sensitive and heatresistant fowl strains indicates that the unique activation pattern of HSF3 in blood tissue is a general phenomenon, not related to thermal history. Taken together, HSF1 and HSF3 mediate transcriptional activity of adult tissues and differentiated cells in a nonredundant manner. Instead, an exclusive, tissue-specific activation is observed, implying that redundancy may be developmentally related. The physiological and developmental implications are discussed.
منابع مشابه
Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related?
Transcriptional induction of heat-shock genes in response to temperature elevation and other stresses is mediated by heat-shock transcription factors (HSFs). Avian cells express two redundant heat-shock responsive factors, HSF1 and HSF3, which differ in their activation kinetics and threshold induction temperature. Unlike the ubiquitous activation of HSF1, the DNA-binding activity of HSF3 is re...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملDisruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance.
The vertebrate genome encodes a family of heat shock factors (HSFs 1-4) of which the DNA-binding and transcriptional activities of HSF1 and HSF3 are activated upon heat shock. HSF1 has the properties of a classical HSF and exhibits rapid activation of DNA-binding and transcriptional activity upon exposure to conditions of heat shock and other stresses, whereas HSF3 typically is activated at hig...
متن کاملHSF1 and HSF3 cooperatively regulate the heat shock response in lizards
Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mamma...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کامل